Similarity Search in High Dimensions III

Piotr Indyk MIT

Approximate Near Neighbor

- c-Approximate r-Near Neighbor: build data structure which, for any query q:
 - If there is a point $p \in P$, $||p-q|| \le r$
 - − it returns $p' \in P$, $||p-q|| \leq cr$

 \bigcirc

LSH

- A family H of functions h: R^d → U is called (P₁,P₂,r,cr)-sensitive, if for any p,q:
 – if ||p-q|| <r then Pr[h(p)=h(q)] > P₁
 - if ||p-q|| > cr then $Pr[h(p)=h(q)] < P_2$
- Example: Hamming distance
 h(p)=p_i, i.e., the i-th bit of p
 - Probabilities: Pr[h(p)=h(q)] = 1-H(p,q)/d

p=10010010 q=11010110

Algorithm

- We use functions of the form $g(p) = \langle h_1(p), h_2(p), \dots, h_k(p) \rangle$
- Preprocessing:
 - Select $g_1 \dots g_L$
 - For all $p \in P$, hash p to buckets $g_1(p) \dots g_L(p)$
- Query:
 - Retrieve the points from buckets $g_1(q)$, $g_2(q)$, ..., until
 - Either the points from all L buckets have been retrieved, or
 - Total number of points retrieved exceeds 3L
 - Answer the query based on the retrieved points
 - Total time: O(dL)

Analysis [IM'98, Gionis-Indyk-Motwani'99]

- Lemma1: the algorithm solves c-approximate NN with:
 - Number of hash functions:

L=C n^ρ, ρ=log(1/P1)/log(1/P2)

(C=C(P1,P2) is a constant for P1 bounded away from 0) [O'Donnell-Wu-Zhou'09]

Constant success probability per query q

Lemma 2: for Hamming LSH functions, we have ρ=1/c

Proof

- Define:
 - -p: a point such that $||p-q|| \le r$
 - -FAR(q)={ p'∈P: ||p'-q|| >c r }

 $-B_i(q)=\{p'\in P: g_i(p')=g_i(q)\}$

- Will show that both events occur with >0 probability:
 - $-E_1: g_i(p)=g_i(q)$ for some i=1...L
 - $-\operatorname{\mathsf{E}}_2:\Sigma_i \left| \mathsf{B}_i(q) \cap \operatorname{\mathsf{FAR}}(q) \right| < 3L$

Proof ctd.

- Set k= ceil(log_{1/P2} n)
- For $p' \in FAR(q)$, $Pr[g_i(p')=g_i(q)] \le P_2^k \le 1/n$
- E[|B_i(q)∩FAR(q)|] ≤ 1
- $E[\Sigma_i | B_i(q) \cap FAR(q) |] \le L$
- $\Pr[\Sigma_i | B_i(q) \cap FAR(q) | \ge 3L] \le 1/3$

Proof, ctd.

- $\Pr[g_i(p)=g_i(q)] \ge 1/P_1^k \ge P_1^{\log_{1/P_2}(n)+1} \ge 1/(P_1^p)=1/L$
- $\Pr[g_i(p)\neq g_i(q), i=1..L] \le (1-1/L)^L \le 1/e$

Proof, end

- Pr[E₁ not true]+Pr[E₂ not true]
 ≤ 1/3+1/e =0.7012.
- Pr[E₁ ∩ E₂] ≥ 1-(1/3+1/e) ≈0.3

Proof of Lemma 2

- Statement: for
 - P1=1-r/d
 - P2=1-cr/d

we have $\rho = \log(P1)/\log(P2) \le 1/c$

- Proof:
 - Need $P1^{c} \ge P2$
 - $-But (1-x)^{c} \ge (1-cx)$ for any 1>x>0, c>1

Recap

- LSH solves c-approximate NN with:
 - Number of hash fun: L=O(n $^{\rho}$), ρ =log(1/P1)/log(1/P2)
 - For Hamming distance we have $\rho = 1/c$
- Questions:
 - Beyond Hamming distance ?
 - Embed I_2 into I_1 (random projections)
 - I₁ into Hamming (discretization)
 - Reduce the exponent ρ ?

Projection-based LSH for L2

[Datar-Immorlica-Indyk-Mirrokni'04]

- Define h_{X,b}(p)=[(p*X+b)/w]:
 - $w \approx r$
 - $X=(X_1...X_d)$, where X_i is chosen from:
 - Gaussian distribution (for I₂ norm)*
 - b is a scalar

Analysis

- Need to:
 - Compute Pr[h(p)=h(q)] as a function of ||p-q|| and w; this defines P₁ and P₂
 - For each c choose w that minimizes

 $\rho = \log_{1/P2}(1/P_1)$

W

- Method:
 - For I₂: computational
 - For general I_s: analytic

$\rho(\textbf{c})$ for \textbf{I}_2

- Improvement not dramatic
- But the hash function very simple and works directly in $\rm I_2$
 - Basis for the Exact Euclidean LSH package (E2LSH)

New LSH scheme

[Andoni-Indyk'06]

- Instead of projecting onto R¹, project onto R^t, for constant t
- Intervals \rightarrow lattice of balls
 - Can hit empty space, so hash until a ball is hit
- Analysis:
 - $-\rho = 1/c^2 + O(\log t / t^{1/2})$
 - Time to hash is t^{O(t)}
 - Total query time: dn^{1/c²+o(1)}
- [Motwani-Naor-Panigrahy'06]: LSH in I_2 must have $\rho \ge 0.45/c^2$
- [O'Donnell-Wu-Zhou'09]: $\rho \ge 1/c^2 - o(1)$

New LSH scheme, ctd.

- How does it work in practice ?
- The time t^{O(t)}dn^{1/c²+f(t)} is not very practical
 - Need t \approx 30 to see some improvement
- Idea: a different decomposition of R^t
 - Replace random balls by Voronoi diagram of a lattice
 - For specific lattices, finding a cell containing a point can be very fast
 →fast hashing

Leech Lattice LSH

- Use Leech lattice in R²⁴, t=24
 - Largest kissing number in 24D: 196560
 - Conjectured largest packing density in 24D
 - 24 is 42 in reverse...
- Very fast (bounded) decoder: about 519 operations [Amrani-Beery'94]

• Performance of that decoder for c=2:

- 1/c² 0.25
- 1/c 0.50
- Leech LSH, any dimension: $\rho \approx 0.36$
- Leech LSH, 24D (no projection): $\rho \approx 0.26$

LSH Zoo

- Have seen:
 - Hamming metric: projecting on coordinates
 - L₂ :random projection+quantization
- Other (provable):
 - L₁ norm: random shifted grid [Andoni-Indyk'05] (Cf. [Bern'93])
 - Vector angle [Charikar'02] based on [Goemans-Williamson'94]
 - Jaccard coefficient [Broder'97]

 $J(A,B) = |A \cap B| / |A \cup B|$

- Other (empirical): inscribed polytopes [Terasawa-Tanaka'07], orthogonal partition [Neylon'10]
- Other (applied): semantic hashing, spectral hashing, kernelized LSH, Laplacian co-hashing, , BoostSSC, WTA hashing,...

Open questions

- Practically efficient LSH scheme for L_2 with $\rho = 1/c^2$
- Theoretically more efficient, e.g., decoder with $t^{O(1)}$ time
- Understand data adaptation (a.k.a. semantic hashing, spectral hashing, kernelized LSH, Laplacian co-hashing, BoostSSC, WTA hashing,...)
 - Would like an algorithm that is
 - correct (with desired probability) for any query
 - "efficient" on "good" data

Min-wise hashing

- In many applications, the vectors tend to be quite sparse (high dimension, very few 1's)
- Easier to think about them as sets
- For two sets A,B, define the Jaccard coefficient:
 J(A,B)=|A ∩ B|/|A U B|

- If A=B then J(A,B)=1

– If A,B disjoint then J(A,B)=0

 How to compute short sketches of sets that preserve J(.) ?

Hashing

• Mapping:

$g(A)=min_{a\in A} h(a)$

where h is a random permutation of the elements in the universe

- Fact: Pr[g(A)=g(B)]=J(A,B)
- Proof: Where is min(h(A) U h(B)) ?

Random hyperplane

- Let u,v be unit vectors in R^m
- Angular distance:

A(u,v)=angle between u and v

- Sketching:
 - Choose a random unit vector r
 - Define s(u)=sign(u*r)

Probabilities

- What is the probability of sign(u*r)≠sign(v*r) ?
- It is $A(u,v)/\pi$

